This guideline has been prepared to serve as a recommendation to applicants wishing to submit data as evidence of efficacy for veterinary medicines using bioavailability/bioequivalence studies. It represents the Medicines Control Council’s current thinking on this topic. It is not intended as an exclusive approach. Alternative approaches may be used but must be scientifically justified. The MCC is committed to ensure that all medicines gaining market approval will be of the required quality, safety and efficacy and in doing so reserves the right to make amendments in keeping with the knowledge which is current at the time of consideration of data accompanying applications for registration of medicines.

REGISTRAR OF MEDICINES
MS M.P. MATSOSO
TABLE OF CONTENTS

1. INTRODUCTION ... Page 4 of 29

2. DEFINITIONS ... Page 4 of 29

 2.1 Active Pharmaceutical Ingredient (API) ... Page 4 of 29
 2.2 Pharmaceutical Product .. Page 5 of 29
 2.3 Pharmaceutical Equivalence .. Page 5 of 29
 2.4 Therapeutic Equivalence .. Page 5 of 29
 2.5 Bioavailability .. Page 5 of 29
 2.6 Bioequivalence .. Page 5 of 29
 2.7 Pharmaceutical Dosage Form .. Page 6 of 29
 2.8 Multi-Source (Generic) Pharmaceutical Product .. Page 6 of 29
 2.9 Proportionally Similar Dosage Forms/Products ... Page 6 of 29

3. DESIGN AND CONDUCT OF STUDIES FOR ORALLY ADMINISTERED PHARMACEUTICAL PRODUCTS .. Page 7 of 29

 3.1 Design .. Page 7 of 29
 3.2 Subjects .. Page 7 of 29
 3.2.1 Number of Subjects ... Page 7 of 29
 3.2.2 Selection of Subjects .. Page 9 of 29
 3.2.3 Inclusion of Patients .. Page 10 of 29
 3.2.4 Genetic Phenotyping .. Page 10 of 29
 3.3 Standardisation of the Study Conditions ... Page 10 of 29
 3.4 Sample Collection and Sampling Times .. Page 11 of 29
 3.5 Characteristics to be Investigated ... Page 11 of 29
 3.5.1 Blood/Plasma/Serum Concentration versus Time Profiles Page 11 of 29
 3.5.2 Urinary Excretion Profiles ... Page 12 of 29
 3.5.3 Pharmacodynamic Studies .. Page 13 of 29
 3.6 Chemical Analysis .. Page 13 of 29
 3.7 Reference Product .. Page 14 of 29
 3.7.1 Reference Products Registered and Marketed in South Africa Page 14 of 29
 3.7.2 Reference Products Registered but not Procured inside South Africa Page 14 of 29
 3.7.3 Reference Products Registered in South Africa but not Marketed (Available) in South Africa .. Page 15 of 29
 3.7.4 Reference Products for Combination Products ... Page 16 of 29
 3.8 Study Products and Batch Size .. Page 17 of 29
 3.8.1 Study Products ... Page 17 of 29
 3.8.2 Batch Size ... Page 17 of 29
 3.9 Data Analysis ... Page 18 of 29
 3.9.1 Statistical Analysis ... Page 18 of 29
Registration of Veterinary Medicines

Bioavailability and Bioequivalence

3.9.2 Acceptance Range for Pharmacokinetic Parameters ... Page 18 of 29
3.9.2.1 Single-Dose Studies ... Page 18 of 29
3.9.2.2 Steady-State Studies ... Page 19 of 29
3.10 Reporting of Results ... Page 19 of 29
3.10.1 Clinical Report .. Page 20 of 29
3.10.2 Analytical Report ... Page 20 of 29
3.10.3 Pharmacokinetic and Statistical Report .. Page 21 of 29
3.10.4 Quality Assurance ... Page 22 of 29
3.11 Expiry Dates of Bio-studies ... Page 22 of 29

4 BIOAVAILABILITY AND BIOEQUIVALENCE REQUIREMENTS Page 22 of 29

4.1 Orally Administered Drug Products Intended for Systemic Action Page 22 of 29
4.1.1 Solutions .. Page 22 of 29
4.1.2 Suspensions .. Page 22 of 29
4.1.3 Immediate Release Products – Tablets and Capsules ... Page 22 of 29
4.1.4 Modified Release Products .. Page 23 of 29

4.1.5 Miscellaneous Oral Dosage Forms .. Page 23 of 29

4.2 Orally Administered Drugs Intended for Local Action .. Page 23 of 29
4.3 Parenteral Solutions ... Page 23 of 29

4.4 Topically Administered Products .. Page 23 of 29
4.4.1 Locally Acting ... Page 23 of 29
4.4.2 Systemically Acting .. Page 24 of 29

4.5 Products Intended for Other Routes of Administration ... Page 24 of 29
4.6 Variations or Post Registration Amendments ... Page 24 of 29

5 WAIVERS OF IN VIVO BIOEQUIVALENCE STUDIES ... Page 24 of 29

5.1 Immediate Release Products ... Page 24 of 29
5.1.1 Class 1 Drug Substances ... Page 24 of 29
5.1.2 Different Strength Dosage Forms .. Page 25 of 29

5.2 Modified Release Products .. Page 26 of 29
5.2.1 Beaded Capsules - Lower Strength .. Page 26 of 29
5.2.2 Tablets – Lower strength .. Page 26 of 29

6 REFERENCES .. Page 27 of 29

APPENDIX 1 - Abbreviations and Symbols ... Page 28 of 29
APPENDIX 2 - Example of Bio-study Data Formatted for SAS Page 29 of 29
1. INTRODUCTION

Adequate evidence/proof of efficacy and safety for all multisource products in the form of appropriate *in vivo* bioequivalence studies must be submitted with each application for the registration of a veterinary medicine.

To exert an optimal therapeutic action an active moiety should be delivered to its site of action in an effective concentration for the desired period. To allow reliable prediction of the therapeutic effect the performance of the dosage form containing the active substance should be well characterised.

Comparison of therapeutic performances of two pharmaceutical products containing the same active substance is a critical means of assessing the possibility of using either the innovator or a multi-source (generic) pharmaceutical product. Assuming that in the same subject a similar plasma drug concentration time course will result in similar drug concentrations at the site of action and thus in a similar effect, pharmacokinetic data instead of therapeutic results may be used to establish bioequivalence.

The objectives of this guideline are to:

i. Define when bioavailability or bioequivalence data will be required in order to prove safety and efficacy.

ii. Provide guidance on the design and conduct of studies and the evaluation of data.

iii. Provide guidance when *in vitro* instead of *in vivo* data may be used.

iv. Provide guidance when suitably validated pharmacodynamic methods can be used to demonstrate bioequivalence.

For pharmaceutical products where the active ingredient is not intended to be delivered into the general circulation, the common systemic bioavailability approach cannot be applied. Under these conditions availability (local) may be assessed by quantitative measurements which appropriately reflect the presence of the active ingredient at the site of action.

2. DEFINITIONS

2.1 Active Pharmaceutical Ingredient (API)

A substance or compound used or intended to be used in the manufacture of a pharmaceutical product and which is expected to have a medicinal or pharmacological effect when administered.

2.2 Pharmaceutical Product

Any preparation for human or veterinary use containing one or more active pharmaceutical ingredients with or without pharmaceutical excipients or additives that is intended to modify or explore physiological systems or pathological states for the benefit of the recipient.

2.3 Pharmaceutical Equivalence

Pharmaceutical products are pharmaceutically equivalent if they contain the same amount of the same active pharmaceutical ingredient(s) in the same dosage form, if they meet the same or comparable standards and if they are intended to be administered by the same route.

Pharmaceutical equivalence does not necessarily imply bioequivalence as differences in the excipients
and/or the manufacturing process can lead to differences in the product performance.

2.4 Therapeutic Equivalence

Two pharmaceutical products are therapeutically equivalent if they are pharmaceutically equivalent and, after administration in the same molar dose, their effects with respect to both efficacy and safety are essentially the same, as determined from appropriate bioequivalence, pharmacodynamic, clinical or in vitro studies.

2.5 Bioavailability

Bioavailability refers to the rate and extent to which the active pharmaceutical ingredient, or its active moiety, is absorbed from a pharmaceutical product and becomes available at the site of action.

It may be useful to distinguish between the “absolute bioavailability” of a given dosage form as compared with that (100%) following intravenous administration (e.g. oral solution vs. iv.), and the “relative bioavailability” as compared with another form administered by the same or another non-intravenous route (e.g. tablets vs. oral solution).

2.6 Bioequivalence

Bioequivalence is defined as the absence of a significant difference in the bioavailability between two pharmaceutically equivalent products under similar conditions in an appropriately designed study.

Comparative studies using clinical or pharmacodynamic end points may be used to demonstrate bioequivalence.

2.7 Pharmaceutical Dosage Form

A pharmaceutical dosage form is a pharmaceutical product formulated to produce a specific physical form (e.g. tablet, capsule, solution etc.) suitable for administration to human and animal subjects.

2.8 Multi-Source (Generic) Pharmaceutical Product

Multi-source pharmaceutical products are pharmaceutically equivalent products that may or may not be therapeutically equivalent.

2.9 Proportionally Similar Dosage Forms/Products

Pharmaceutical products are considered proportionally similar in the following cases:

i. When all active pharmaceutical ingredients and inactive components are in exactly the same proportion between different strengths (e.g. a 100mg strength tablet has all active and inactive pharmaceutical ingredients exactly half of a 200mg strength tablet and twice that of a 50mg strength tablet).

ii. When the active and inactive ingredients are not in exactly the same proportion but the ratios of inactive pharmaceutical ingredients to the total weight of the dosage form are within the limits defined by the Guideline for Major and Minor Amendments.

iii. When the pharmaceutical products contain high potency active pharmaceutical ingredients and these products are of different strengths but are of similar weight.
The difference in API content between strengths may be compensated for by weight changes in one or more of the inactive pharmaceutical excipients provided that the total weight of the pharmaceutical product remains within 10% of the weight of the pharmaceutical product on which the bioequivalence study was performed. In addition, the same inactive pharmaceutical excipients must be used for all strengths, provided that the changes remain within the limits defined by the Guideline for Major and Minor Amendments.

Exceptions to the above definitions may be considered provided justification is submitted.

3. DESIGN AND CONDUCT OF STUDIES FOR ORALLY ADMINISTERED PHARMACEUTICAL PRODUCTS

A bioequivalence study is basically a comparative bioavailability study designed to establish equivalence between test and reference products. In the following sections, requirements for the design and conduct of bioavailability or bioequivalence studies are formulated.

3.1 Design

The study should be designed in such a way that the formulation effect can be distinguished from other effects. If the number of formulations to be compared is two, a balanced two-period, two-sequence crossover design is considered to be the design of choice.

However, under certain circumstances and provided the study design and the statistical analyses are scientifically sound, alternatively well-established designs such as parallel designs for very long half-life substances could be considered.

In general, single dose studies will suffice, but there are situations in which steady-state studies may be required and must be justified.

To avoid carry-over effects, treatments should be separated by adequate wash-out periods.

The sampling schedule should be planned to provide an adequate estimation of Cmax and to cover the plasma drug concentration time curve long enough to provide a reliable estimate of the extent of absorption. This is generally achieved if the AUC derived from measurements is at least 80% of the AUC extrapolated to infinity.

If a reliable estimate of terminal half-life is necessary, it should be obtained by collecting at least three to four samples during the terminal log linear phase.

For long half-life drugs (> 24 hours) the study should cover a minimum of 72 hours unless 80% is covered before 72 hours.

3.2 Trial Animals

3.2.1 Number of Animals

It is recommended that the number of subjects should be justified on the basis of providing at least 80% power of meeting the acceptance criteria.

The minimum number of animals should not be less than 8. If 8 animals do not provide 80% power more subjects should be included.

A minimum of 12 animals is required for modified release oral dosage forms.
The number of animals required to provide an 80% power of meeting and passing the acceptance criteria for the 0.8 - 1.25 acceptable interval can be determined from Table 1 below (Reference 1).

Table 1 Sample sizes to attain a power of 70%, 80% and 90% in the case of the multiplicative model: \(\alpha = 5 \% \), \(\theta_1=0.8 \), \(\theta_2=1.25 \) and various CVs.

<table>
<thead>
<tr>
<th>CV</th>
<th>Power</th>
<th>(\mu_T/\mu_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%)</td>
<td>(%)</td>
<td>0.85</td>
</tr>
<tr>
<td>5.0</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>7.5</td>
<td>70</td>
<td>16</td>
</tr>
<tr>
<td>10.0</td>
<td>70</td>
<td>28</td>
</tr>
<tr>
<td>12.5</td>
<td>70</td>
<td>42</td>
</tr>
<tr>
<td>15.0</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>17.5</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>20.0</td>
<td>70</td>
<td>102</td>
</tr>
<tr>
<td>22.5</td>
<td>70</td>
<td>128</td>
</tr>
<tr>
<td>25.0</td>
<td>70</td>
<td>158</td>
</tr>
<tr>
<td>27.5</td>
<td>70</td>
<td>190</td>
</tr>
<tr>
<td>30.0</td>
<td>70</td>
<td>224</td>
</tr>
<tr>
<td>5.0</td>
<td>80</td>
<td>14</td>
</tr>
<tr>
<td>7.5</td>
<td>80</td>
<td>22</td>
</tr>
<tr>
<td>10.0</td>
<td>80</td>
<td>36</td>
</tr>
<tr>
<td>12.5</td>
<td>80</td>
<td>54</td>
</tr>
<tr>
<td>15.0</td>
<td>80</td>
<td>78</td>
</tr>
<tr>
<td>17.5</td>
<td>80</td>
<td>104</td>
</tr>
<tr>
<td>20.0</td>
<td>80</td>
<td>134</td>
</tr>
<tr>
<td>22.5</td>
<td>80</td>
<td>168</td>
</tr>
<tr>
<td>25.0</td>
<td>80</td>
<td>206</td>
</tr>
<tr>
<td>27.5</td>
<td>80</td>
<td>248</td>
</tr>
<tr>
<td>30.0</td>
<td>80</td>
<td>292</td>
</tr>
<tr>
<td>5.0</td>
<td>90</td>
<td>14</td>
</tr>
<tr>
<td>7.5</td>
<td>90</td>
<td>28</td>
</tr>
<tr>
<td>10.0</td>
<td>90</td>
<td>48</td>
</tr>
<tr>
<td>12.5</td>
<td>90</td>
<td>74</td>
</tr>
<tr>
<td>15.0</td>
<td>90</td>
<td>106</td>
</tr>
<tr>
<td>17.5</td>
<td>90</td>
<td>142</td>
</tr>
<tr>
<td>20.0</td>
<td>90</td>
<td>186</td>
</tr>
<tr>
<td>22.5</td>
<td>90</td>
<td>232</td>
</tr>
<tr>
<td>25.0</td>
<td>90</td>
<td>284</td>
</tr>
<tr>
<td>27.5</td>
<td>90</td>
<td>342</td>
</tr>
<tr>
<td>30.0</td>
<td>90</td>
<td>404</td>
</tr>
</tbody>
</table>

Note: Less than 8 subjects should not be used even if the above table indicates that a power of 80% can be attained with less than 12 subjects.

To determine the number of animals required, proceed as follows:

i. Determine the CV% of the appropriate BA/BE parameter for the drug under investigation from published literature or an appropriate pilot study.

ii. Choose an appropriate mean test/ reference ratio that is envisaged for the BA/BE parameter (\(\mu_T/\mu_R \)). Ideally this value will be 1.00, however, in practice this is seldom the case so the choice of this ratio is at the discretion of the Sponsor/Applicant.

iii. Determine from the table the number of animals required for the appropriate CV%, Power and \(\mu_T/\mu_R \).

For example, if the drug under investigation has an AUC CV of 20% and if a \(\mu_T/\mu_R \) of 0.95 or 1.05 is selected, then a minimum of 20 and 18 animals respectively will be required for a power of 80%.
Alternatively, the sample size can be calculated using appropriate power equations, which must be presented in the protocol.

Add-ons will be permitted but the number of animals in the add-on should not exceed the initial number of animals in the study, unless fully justified. The applicant must show that the data are homogeneous using appropriate statistical tests. The provision for add-ons must be made in the protocol *a priori*.

3.2.2 Selection of Animals

The animal population for bioequivalence studies should be selected with the aim to minimise variability and permit detection of differences between pharmaceutical products. Therefore, the studies should normally be performed with healthy animals.

The inclusion/exclusion criteria should be clearly stated in the protocol.

3.3 Standardisation of the Study Conditions

The test conditions should be standardised in order to minimise the variability of all factors involved, except that of the products being tested. Therefore standardisation of the diet, fluid intake and exercise is recommended.

3.4 Sample Collection and Sampling Times

Under normal circumstances, blood should be the biological fluid sampled to measure the concentrations of the drug. In most cases the drug may be measured in serum or plasma, however, in some cases, whole blood may be more appropriate for analysis.

When blood is collected:

i. The duration of blood sampling in a study should be sufficient to account for at least 80% of the known AUC to infinity (AUC∞). This period is approximately three terminal half-lives of the drug.

ii. For most drugs 12 including a pre-dose sample should be collected per animals per dose.

iii. Sample collection should be spaced such that the maximum concentration of drug in blood (Cmax) and the terminal elimination rate constant (Kel) can be estimated.

iv. At least three to four samples should be obtained during the terminal log-linear phase to estimate Kel by linear regression analysis.

v. The actual clock time when samples are collected as well as the elapsed time relative to drug administration should be recorded.

If drug concentrations in blood are too low to be detected and a substantial amount (> 40%) of the drug is eliminated unchanged in the urine, then urine may serve as the biological fluid to be sampled.
When urine is collected:

i. The volume of each sample must be measured immediately after collection and included in the report.

ii. Urine should be collected over an extended period and generally no less than seven times the terminal elimination half-life so that the amount excreted to infinity (Ae∞) can be estimated.

iii. Sufficient samples must be obtained to permit an estimate of the rate and extent of renal excretion. For a 24-hour study, sampling times of 0 to 2, 2 to 4, 4 to 8, 8 to 12, and 12 to 24 hours are usually appropriate.

3.5 Characteristics to be Investigated

3.5.1 Blood/Plasma/Serum Concentration versus Time Profiles

In most cases evaluation of bioavailability and bioequivalence will be based upon measured concentrations of the parent compound (i.e. the API) where the shape of and the area under the plasma concentration versus time curves are generally used to assess the rate and extent of absorption.

In some situations, however, measurements of an active or inactive metabolite may be necessary instead of the parent compound.

i. If the concentration of the active substance is too low to be accurately measured in the biological matrix.

ii. If there is a major difficulty with the analytical method.

iii. If the parent compound is unstable in the biological matrix.

iv. If the half-life of the parent compound is too short thus giving rise to significant variability.

Justification for not measuring the parent compound must be submitted by the applicant and bioequivalence determinations based on metabolites should be justified in each case.

Sampling points should be chosen so that the plasma concentration versus time profiles can be defined adequately so as to allow accurate estimation of relevant parameters.

The following bioavailability parameters are to be estimated:

i. AUCt, AUC∞, Cmax, tmax for plasma concentration versus time profiles.

ii. AUCt, Cmax, Cmin, fluctuation (%PTF) and swing (%Swing) for studies conducted at steady state.

iii. Any other justifiable characteristics (cf. Appendix I).

iv. The method of estimating AUC-values should be specified.
3.5.2 Urinary Excretion Profiles

In the case of API’s predominantly excreted renally, the use of urine excretion data may be advantageous in determining the extent of drug input. However, justification must also be given when this data is used to estimate the rate of absorption.

Sampling points should be chosen so that the cumulative urinary excretion profiles can be defined adequately so as to allow accurate estimation of relevant parameters.

The following bioavailability parameters are to be estimated:

i. Ae_t, Ae_∞ as appropriate for urinary excretion studies.

ii. Any other justifiable characteristics (cf. Appendix I).

iii. The method of estimating AUC-values should be specified.

3.5.3 Pharmacodynamic Studies

If pharmacodynamic parameters/effects are used as bioequivalence criteria, justification for their use must be submitted by the applicant. Bioequivalence determinations based on these measurements should be justified in each case. In addition:

i. A dose response relationship should be demonstrated.

ii. Sufficient measurements should be taken to provide an appropriate pharmacodynamic response profile.

iii. The complete effect curve should remain below the maximum physiological response.

iv. All pharmacodynamic measurements/methods must be validated with respect to specificity, accuracy and reproducibility.

3.6 Chemical Analysis

The bioanalytical part of bioequivalence trials should be conducted according to the applicable principles of Good Laboratory Practice (GLP) and cGMP.

Bioanalytical methods used to determine the active moiety and/or its metabolic product(s) in plasma, serum, blood or urine or any other suitable matrix must be well characterised, fully validated and documented to yield reliable results that can be satisfactorily interpreted.

The main objective of method validation is to demonstrate the reliability of a particular method for the quantitative determination of an analyte(s) in a specific biological matrix. Validation should therefore address the following characteristics of the assay (Reference 2):

i. Stability of stock solutions.

ii. Stability of the analyte(s) in the biological matrix under processing conditions and during the entire period of storage.

iii. Specificity.
iv. Accuracy.
v. Precision.
vi. Limits of detection and quantitation.
vii. Response function.
viii. Robustness and ruggedness.

A calibration curve should be generated for each analyte in each analytical run and it should be used to calculate the concentration of the analyte in the unknown samples in the run.

A number of separately prepared Quality Control samples should be analysed with processed test samples at intervals based on the total number of samples.

All procedures should be performed according to pre-established Standard Operating Procedures (SOPs).

All relevant procedures and formulae used to validate the bioanalytical method should be submitted and discussed.

Any modification of the bioanalytical method before and during analysis of study specimens may require adequate revalidation and all modifications should be reported and the scope of revalidation justified.

3.7 Reference Product

N.B. Products that are not registered in South Africa cannot be used as reference products in bioequivalence studies submitted in support of an application e.g. a product approved for marketing in another country(s) but not approved for marketing in South Africa cannot be used as a reference product.

3.7.1 Reference Products Registered and Marketed in South Africa

The reference product must be an innovator product registered with the Medicines Control Council (MCC) and must be procured in South Africa except that an “OLD MEDICINE” may be used as a reference product when no other such product has been registered and provided that it is available on the South African market. If more than one such product is available, then the product that is the market leader in South Africa should be used as the reference.

3.7.2 Reference Products Registered but not Procured inside South Africa.

1. A foreign reference product can be used provided that the following evidence is submitted:
 i. The reference product has an identical formulation (the same in all respects) as the innovator product marketed in South Africa.
 ii. The reference product is manufactured by the same method as the innovator product marketed in South Africa.
 iii. The reference product is manufactured at the same site as the innovator product marketed in South Africa.
The intention of the above clause is to provide for the use of a reference product where that innovator product has been imported for use in South Africa.

2. As an interim measure, bioequivalence studies submitted where a foreign reference product has been used will require comparative dissolution profiles between the foreign product and the innovator product marketed in SA and must meet the f2 requirements when tested in dissolution media of pH 1.2, 4.5 and 6.8, using an appropriate dissolution apparatus (see Guideline for Dissolution Testing).

The intention of the above clause is to make provision for dossiers submitted prior to the implementation of this guideline.

3.7.3 Reference Products Registered in South Africa but not Marketed (Available) in South Africa

If a reference product is registered in SA but cannot be procured (i.e. is not available) in South Africa, then the reference product used can be obtained from outside South Africa provided that the product meets the following criteria:

i. The reference product must be a conventional, immediate-release oral dosage form.

ii. There is no documented evidence of bioavailability problems related to the active pharmaceutical ingredient(s) or the pharmaceutical product, or ingredients or products of similar chemical structure or formulations.

iii. It must be documented that the pharmaceutical product is authorised for marketing by the health authority of a country with drug registration requirements acceptable to the MCC. In such instances the registration requirements of the country where the reference product was approved must be submitted.

iv. It must be documented that the pharmaceutical product is marketed in the country of origin by the same innovator company or corporate entity which currently markets the same active pharmaceutical ingredient in the same dosage form in South Africa; or, that it is marketed in the country of origin through a licensing arrangement with the innovator company or corporate entity which currently markets the product in South Africa. The country of manufacture must be stated.

v. Copies of the labelling for the reference as well as the innovator product marketed in South Africa, together with Certificates of Analysis for both products, analysed using the specifications for description, assay, content uniformity and dissolution proposed in the submission for the multi-source product, must be provided.

vi. The active pharmaceutical ingredient is uncomplicated i.e. it does not exhibit any of the following:

- A narrow therapeutic range or safety margin, e.g. it does not require careful dosage titration or patient monitoring.

- A steep dose / response relationship.

- A risk of serious undesired effects.
Complicated or variable pharmacokinetics e.g.:
- non linear pharmacokinetics
- variable or incomplete absorption
- an absorption window, i.e. site specific absorption
- substantial first-pass metabolism (>40%)
- an elimination half life of 24 hours or more

vii. The active pharmaceutical ingredient must not be a pro-drug.

viii. The dosage form:
- Contains a single API.
- Contains the same quantity of medicinal ingredient as the innovator product registered in South Africa.
- Is the same as the dosage form registered in South Africa with respect to colour, shape, size, weight, type of coating and other relevant attributes.

3.7.4 Reference Products for Combination Products

Combination products should in general, be assessed with respect to bioavailability and bioequivalence of individual active substances:

i. Either individually (in the case of a new combinations), or

ii. Using an existing combination as the reference.

iii. In the former instance, immediate release oral dosage forms containing a single API can be used as the reference. These reference products may include “OLD MEDICINES”.

Bioequivalence testing of such products will be permitted only for those products approved by the MCC.

3.8 Study Products and Batch Size

3.8.1 Study Products

The following information on test and reference products must be submitted:

i. Assay of test and reference product.

ii. Comparative dissolution profiles of the test and the reference product.

iii. A CoA of the API used in the test product bio-batch as well as quality control data demonstrating compliance with the specifications.

In addition, the test and reference products must conform to the following:

i. Test and the reference product should not differ by more than 5% in assay.
ii. A sufficient number of retention samples of both test and reference products used in the bioequivalence study must be kept by the study sponsor for one year in excess of the accepted shelf life or two years after completion of the trial or until approval, whichever is longer, in order to allow re-testing if required by the MCC.

iii. A complete audit trail of procurement, storage, transport and other use of both the test and reference products must be recorded.

3.8.2 Batch Size

The bio-batch used in the bioequivalence study must satisfy the following requirements:

i. The bio-batch must be a minimum of 10 000 units or at least 10% of the production batch which ever is greater.

 If the bio-batch is less than 10 000 the applicant must motivate and justify the use of a smaller batch.

ii. If the production batch is smaller than 10 000 units, a full production batch will be required.

iii. A high level of assurance must be provided that the product and process used in the production of the product will be feasible on an industrial scale. If the product is subjected to further scale-up, this should be validated appropriately.

3.9 Data Analysis

The primary concern of bioequivalence assessment is to quantify the difference in bioavailability between the test and reference products and to demonstrate that any clinically important difference is unlikely.

3.9.1 Statistical Analysis

The statistical method for testing relative bioavailability (i.e average bioequivalence) is based upon the 90% confidence interval for the ratio of the population means (Test/Reference) on the log-transformed scale, for the parameters under consideration.

Pharmacokinetic parameters derived from measures of concentration, e.g. AUC₀, AUCₜ, Cₘₐₓ should be analysed using ANOVA. Data for these parameters should be transformed prior to analysis using a logarithmic transformation.

If appropriate to the evaluation, the analysis technique for tₘₐₓ should be non-parametric and should be applied to untransformed data.

In addition to the appropriate 90% confidence intervals, summary statistics such as geometric and arithmetic means, SD and %RSD as well as ranges for pharmacokinetic parameters (minimum and maximum) should be provided.
3.9.2 Acceptance Range for Pharmacokinetic Parameters

The pharmacokinetic parameters to be tested, the procedure for testing and the acceptance ranges should be stated beforehand in the protocol.

3.9.2.1 Single-Dose Studies

In single-dose studies designed to determine average bioequivalence, acceptance criteria for the main bioequivalence parameters are as follows:

i. \(\frac{\text{AUC}_t}{\text{AUC}_r} \) - ratio

The 90% confidence interval for the test/reference ratio should lie within the acceptance interval of 0.80-1.25 (80 – 125%) calculated using log transformed data.

In certain cases an alternative approach may be acceptable.

Justification for the use of alternative methods e.g. scaled average bioequivalence (ABE) based on sound scientific principles for the evaluation of the bioequivalence of highly variable drugs has been described in the literature (Reference 2 and 3). Use of alternative methods MUST be stated a priori in the protocol and cannot be added retrospectively.

ii. \(\frac{C_{\text{max}}}{C_{\text{ref}}} \) - ratio

The 90% confidence interval for the test/reference ratio should lie within an acceptance interval of 75 – 133% calculated using log transformed data, except for narrow therapeutic range API’s when an acceptance interval of 80 – 125% will apply.

In certain cases e.g. in the case of highly variable API’s, a wider interval or other appropriate measures may be acceptable but must be stated a priori and justified in the protocol (See references 3 and 4).

3.9.2.2 Steady-State Studies

i. Immediate Release Dosage Forms

The acceptance criteria are the same as for single dose studies but using \(\text{AUC}_t \) instead of \(\text{AUC}_r \).

ii. Controlled/Modified Release Dosage Forms

The acceptance criteria are as follows:

- \(\frac{\text{AUC}_t}{\text{AUC}_r} \) - ratio

The 90% confidence interval for the test/reference ratio should lie within the acceptance interval of 0.80-1.25 (80 – 125%) calculated using log transformed data.

- \(\frac{C_{\text{max(ss)}}}{C_{\text{min(ss)}}} \) and %Swing and %PTF

The 90% confidence interval for the test/reference ratio should lie within the acceptance interval of 0.75-1.33 (75 – 133%) calculated using log transformed data.

The 90% confidence interval for the test/reference ratio should lie within the acceptance interval of 0.80-1.25 (80 – 125%) calculated using log transformed data.
3.10 Reporting of Results

The report of a bioavailability or a bioequivalence study should give the complete documentation of its protocol, conduct and evaluation complying with GCP, GLP and cGMP.

3.10.1 Clinical Report

In addition to the protocol etc., the clinical section of the bioequivalence study report should include the following:

i. A statement indicating the independence of the ethics committee.

ii. Documented proof of ethical approval of the study.

iii. A complete list of the members of the ethics committee, their qualifications and affiliations.

iv. An independent monitor’s report on the study.

v. Names and affiliations of the all investigator(s), the site of the study and the period of its execution.

vi. The names and batch numbers of the products being tested.

vii. The manufacturing sites (address of the manufacturer of both the reference and the test product).

viii. Expiry date of the reference product and the date of manufacture of the test product used in the study.

x. CoA of the API used in the test product bio-batch.

xi. A signed statement confirming that the test product used in the bio-study is the same as the one that is submitted for registration.

xii. A summary of adverse events which must be accompanied by a discussion on the influence of these events on the outcome of the study.

xiii. A summary of protocol deviations (sampling and non-sampling) which must be accompanied by a discussion on the influence of these adverse events on the outcome of the study.

xiv. Animals who are withdrawn from the study should be identified and their withdrawal fully documented and accounted for.

3.10.2 Analytical Report

The analytical section of the bioequivalence report should include the following which must be clearly presented:

i. The full analytical validation report.

ii. All individual subject concentration data.
iii. All individual plasma concentration versus time profiles presented on a linear/linear as well as log/linear scale (or, if appropriate, cumulative urinary excretion data presented on a linear/linear scale).

iv. Calibration data i.e. raw data and back-calculated concentrations for standards, as well as calibration curve parameters for the entire study.

v. Quality control samples for the entire study.

vi. Chromatograms from analytical runs for 20% of all subjects (or a minimum of 4 subjects) including chromatograms for the associated standards and quality control samples.

vii. Analytical data from subjects who dropped out of the study due to an adverse drug event should also be presented.

viii. A summary of protocol deviations which must be accompanied by a discussion on the influence of these deviations on the outcome of the study. Protocol deviations must be justified.

3.10.3 Pharmacokinetic and Statistical Report

The pharmacokinetic and statistical section of the bioequivalence report should include the following, which must be clearly presented:

i. All drug concentration versus time data from the bio-study. This data must be submitted in hard copy and also formatted on a diskette in a format compatible for processing by SAS software. Individual subject data should be in rows and arranged in columns which reflect the subject number, phase number, sequence, formulation and sample concentration versus time data (Appendix 2).

ii. The method(s) and programs used to derive the pharmacokinetic parameters from the raw data.

iii. A detailed ANOVA and/or non-parametric analysis, the point estimates and corresponding confidence intervals for each parameter of interest.

iv. Tabulated summaries of pharmacokinetic and statistical data.

v. The statistical report should contain sufficient detail to enable the statistical analysis to be repeated, e.g. individual demographic data, randomisation scheme, individual subject concentration vs. time data, values of pharmacokinetic parameters for each subject, descriptive statistics of pharmacokinetic parameters for each formulation and period.

vi. Drug concentration data of any subject withdrawn from the study due to an adverse drug event should also be submitted, but should not be included in the statistical analysis.

3.10.4 Quality Assurance

i. The study report should be accompanied by a signed QA statement confirming release of the document.
ii. A declaration must be made by the applicant to indicate whether the site(s) (clinical and analytical) where the study was performed was subjected to a pre-study audit to ascertain the status of GCP and GLP &/or cGMP conditions at the site(s). All audit certificates should clearly indicate the date of audit and the name(s), address(es) and qualifications of the auditor(s).

iii. The applicant should submit an independent monitor’s report on the clinical portion of the study. This report should clearly indicate the date of monitoring and the name, address and qualifications of the monitor and should be included in the study report.

3.11 Expiry Dates of Biostudies

The bioavailability/bioequivalence study must have been completed not longer than three years prior to the date of submission.

4 BIOAVAILABILITY AND BIOEQUIVALENCE REQUIREMENTS

4.1 Orally Administered Drug Products Intended for Systemic Action

4.1.1 Solutions

A bioequivalence waiver may be granted for oral solutions, elixirs, syrups or other solubilized forms containing the same active pharmaceutical ingredient(s) in the same concentration(s) as the South African reference product and containing no ingredient known to significantly affect absorption of the medicinal ingredient(s).

4.1.2 Suspensions

Bioequivalence for a suspension should be treated in the same way as for immediate release solid oral dosage forms.

4.1.3 Immediate Release Products – Tablets and Capsules

In general bioequivalence studies are required. In vivo BE studies should be accompanied by in vivo dissolution profiles on all strengths of each product. Waivers for in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms based on comparative dissolution studies may be acceptable (see Guideline for Dissolution Testing).

4.1.4 Modified Release Products

Modified release products include delayed release products and extended (controlled) release products. In general bioequivalence studies are required. In addition to the studies required for immediate release products, a food-effect study is necessary. Multiple dose studies are generally not recommended.
4.1.5 Miscellaneous Oral Dosage Forms

Rapidly dissolving drug products, such as buccal and sublingual dosage forms, should be tested for in vitro dissolution and in vivo BA and/or BE. Chewable tablets should also be evaluated for in vivo BA and/or BE. Chewable tablets (as a whole) should be subject to in vitro dissolution because they might be swallowed by an animal without proper chewing. In general, in vitro dissolution test conditions for chewable tablets should be the same as for non-chewable tablets of the same active ingredient/moiety.

4.2 Orally Administered Drugs Intended for Local Action

Generally BE studies with clinical efficacy and safety endpoints and/or suitably designed and validated in vitro studies are required.

4.3 Parenteral Solutions

The applicant is not required to submit a bioequivalence study if the product is to be administered as an aqueous intravenous solution containing the same active substance in the same concentration as the currently approved product.

In the case of other parenteral routes other than i/v., e.g. intramuscular or subcutaneous, if the test product is of the same type of solution (aqueous) as the reference product, contains the same concentration of the same active substance and the same or comparable excipients as the medicinal product currently approved, then bioequivalence testing is not required provided that the formulation does not contain an excipient(s) known to significantly affect absorption of the active ingredient(s).

For all other parenterals bioequivalence studies are required.

For intramuscular dosage forms monitoring is required until at least 80% of the AUC∞ has been covered.

4.4 Topically Administered Products

4.4.1 Locally Acting

Topical preparations containing corticosteroids intended for application to the skin and scalp, the human vasoconstrictor test (blanching test) is recommended to prove bioequivalence. Validated visual and/or chromometer data will be necessary.

Topical formulations, other than a simple solution, with bacteriostatic, bactericidal, antiseptic and/or antifungal claims, clinical data (comparative clinical efficacy) will be required. Microbial growth inhibition zones will not be acceptable as proof of efficacy. Simple solutions however, may qualify for a waiver based on appropriate in vitro test methods.

Proof of release by membrane diffusion will not be accepted as proof of efficacy unless there has been data to show the correlation between release through a membrane and clinical efficacy data.

Whenever systemic exposure resulting from locally applied, locally acting medicinal products entails a risk of systemic adverse reactions, systemic exposure should be measured.
4.4.2 Systemically Acting

For locally applied products with systemic action e.g. transdermal products, a bioequivalence study is always required.

4.5 Products Intended for Other Routes of Administration

Products for local use (oral, nasal, inhalation, ocular, dermal, rectal, vaginal etc. administration.) intended to act without systemic absorption the approach to determine bioequivalence based on systemic measurements is not applicable and pharmacodynamic or comparative clinical studies are required. However, pharmacokinetic studies may be required as measures of safety.

4.6 Variations or Post Registration Amendments

For all post registration changes that require proof of efficacy the requirements of this guideline will be applicable.

5. WAIVERS OF IN VIVO BIOEQUIVALENCE STUDIES

Bio-waivers will be considered under the circumstances detailed below.

5.1 Immediate Release Products

5.1.1 Class 1 Drug Substances

When the drug product contains a Class 1 drug substance(s) (based on the Biopharmaceutics Classification System, BCS), and the inactive ingredients used in the dosage form do not significantly affect absorption of the active ingredients a bio-waiver may be acceptable.

The drug substances must be highly soluble, highly permeable and the dosage form rapidly dissolving (see Guideline for Dissolution Testing).

The applicant must provide relevant information to prove that the drug substance falls within the Class 1 classification (Reference 5).

5.1.2 Different Strength Dosage Forms

When the drug product is the same dosage form but of a different strength and is proportionally similar (See Section 2.9) in its active and inactive ingredients, a bio-waiver may be acceptable.

In such cases the demonstration of bioequivalence in vivo of one or more of the lower strength/s may be waived based on dissolution tests (see Guideline for Dissolution Testing) and an in vivo study on the highest strength.
1. **For Multi-source pharmaceutical products**, conducting an *in vivo* study on a strength that is not the highest may be appropriate for reasons of safety. In this case a waiver may be considered for the higher strength when an *in vivo* BE study was performed on a lower strength of the same drug product provided that:

 i. Linear elimination kinetics has been shown over the therapeutic dose range.

 ii. The higher strength is proportionally similar to the lower strength.

2. **For New Chemical Entities** with questions on toxicity, bio-wavers for a higher strength will be determined to be appropriate based on:

 i. Clinical safety and/or efficacy studies including dose desirability of the higher strength, and

 ii. Linear elimination kinetics over the therapeutic dose range, and

 iii. The higher strength being proportionally similar to the lower strength, and

 iv. The same dissolution procedures being used for both strengths and similar dissolution results obtained.

Dissolution profiles are required for all strengths. The f_2 similarity factor should be used to compare dissolution profiles from different strengths of a product. An f_2 value ≥50 indicates a sufficiently similar dissolution profile such that further *in vivo* studies are not necessary. For an f_2 value <50, it may be necessary to conduct an *in vivo* study. The difference factor, f_1, must also be submitted but will not be used as an acceptance criterion (Reference 6).

Note: Details on the performance of dissolution studies are described in the Guideline for Dissolution Testing and not in the BA-BE guideline.

5.2 Modified Release Products

5.2.1 Beaded Capsules - Lower Strength

For extended release beaded capsules where the strength differs only in the number of beads containing the active ingredient, a single-dose, fasting BE study should be carried out on the highest strength. A bio-waiver for the lower strength based on dissolution studies can be requested.

Dissolution profiles in support of a bio-waiver should be generated for each strength using the recommended dissolution test methods described in the Guideline for Dissolution Testing.

5.2.2 Tablets – Lower strength

For extended release tablets when the drug product is:

i. In the same dosage form but in a different strength, and

ii. Is proportionally similar in its active and inactive ingredients, and
iii. Has the same drug release mechanism, an *in vivo* BE determination of one or more lower strengths may be waived based on dissolution testing as previously described. Dissolution profiles should be generated on all the strengths of the test and the reference products.

For Section 5.2.1 and 5.2.2 above, the f_2 factor should be used to compare profiles from the different strengths of the product. An f_2 value of ≥ 50 can be used to confirm that further *in vivo* studies are not needed (see Guideline for Dissolution Testing).

6 References

APPENDIX 1 - Abbreviations and Symbols.

\(C_{\text{max}} \) maximum plasma concentration
\(C_{\text{min}} \) minimum plasma concentration
\(C_{\text{max}} \text{ (ss)} \) maximum plasma concentration at steady-state
\(C_{\text{min}} \text{ (ss)} \) minimum plasma concentration at steady-state
\(C_{\text{av}} \) average plasma concentration
\(t_{\text{max}} \) time to \(C_{\text{max}} \)
\(\text{AUC}_t \) area under the plasma/serum/blood concentration-time curve from time zero to time \(t \) where \(t \) is the last time point with measurable concentration.
\(\text{AUC}_\infty \) area under the plasma/serum/blood concentration-time curve from time zero to time infinity
\(\text{AUC}_\tau \) AUC during a dosage interval at steady state
\(\text{MRT} \) mean residence time
\(A_e_t \) cumulative urinary excretion from drug administration until time \(t \)
\(A_e_\infty \) Amount of unchanged drug excreted in the urine at infinite time (7-10 half lives).
\(t_{1/2} \) elimination half-life
\(\%\text{PTF} \) \((C_{\text{max}} \text{ (ss)} - C_{\text{min}} \text{ (ss)}) / C_{\text{av}} \times 100 \)
\(\%\text{Swing} \) \((C_{\text{max}} \text{ (ss)} - C_{\text{min}} \text{ (ss)}) / C_{\text{min}} \times 100 \)