Biosimilar Monoclonal Antibodies: Registration Requirements

Henry M. J. Leng
Disclaimer

This presentation is given in my personal capacity and represents only the author’s personal views and does not represent policies or recommendations of the MCC or any of its expert committees.
Introduction

• When the general Biosimilars Guideline was published in March 2012, it excluded vaccines and monoclonal antibody products.

• The reason being that these were very complex compared to well-characterized recombinant DNA-derived therapeutic proteins.
High complexity of monoclonal antibodies
Each monoclonal antibody is unique

atorvastatin
Molecular weight
= 558 Daltons
0 amino acids

Interferon-alpha
Molecular weight
= 19,625 Daltons
~165 amino acids

Antibody (IgG)
Molecular weight
= 150,000 Daltons
~1,300 amino acids

Source: http://www.path.cam.ac.uk/~mrc7/mikeimages.html
Antibody Structure

- **Fab fragment**
- **Variable domain**
- **Constant domain**
- **Fc fragment**
Structural Complexity

Functional Complexity

- **CDC**: Complement binds to Fc → cell lysis
- **ADCC**: Fcg Receptor binds to Fc → cell lysis
- **Apoptosis**
- **Phagocytosis**
Manufacturing Complexity of MCB

Recombinant DNA Technology vs Hybridoma Technology

1. **Donor DNA**
 - **Digestion:** Cleaved with restriction enzyme.
 - **Overhangs:** Formed.
2. **Vector**
 - **Mixing:** With donor DNA.
 - **Ligation:** Using DNA ligase.
3. **Bacterial Chromosome**
 - **Introduction:** of DNA molecules.
 - **Replication:** and cell division.
4. **Recombinant DNA Molecules**
 - **Isolation:** From bacterial cells.
5. **Antigen**
 - **Isolation:** from spleen cells.
6. **Hybridization**
 - **Selection:** with hypoxanthine/aminopterin/thymidine (HAT medium).
7. **Polyclonal Antiserum**
 - **Clones:** Monoclonal antibodies.

© 2002 Encyclopædia Britannica, Inc.
Evolution of mAbs

<table>
<thead>
<tr>
<th>Structure</th>
<th>% Human</th>
<th>Example</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>0</td>
<td>Tositumomab, Ibritumomab</td>
<td>Radio-conjugates</td>
</tr>
<tr>
<td>Chimeric</td>
<td>65</td>
<td>Cetuximab, Rituximab</td>
<td></td>
</tr>
<tr>
<td>Humanized</td>
<td>95</td>
<td>Trastuzumab</td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>100</td>
<td>Panitumumab</td>
<td>Transgenic mice</td>
</tr>
</tbody>
</table>
Data Requirements for Biosimilars- including for mAbs

CTD Module	Originator	Biosimilar
3 Quality | | |
4 Non-Clinical | | Cross reference
5 Clinical | | Cross reference

Cross reference – class specific Safety and Efficacy

Integrated Comparability Exercise – product specific Quality, Safety and Efficacy
Comparability Requirement

• Stepwise head-to-head comparison at the levels of quality, safety and efficacy to demonstrate that the biosimilar and the reference medicinal product have similar profiles in terms of physico-chemical properties (quality), safety and efficacy.

• Depending on the similarity profile, the extent of the nonclinical and clinical testing may be reduced compared to a stand-alone development.

• Any difference in quality attributes requires a satisfactory justification of the potential implications with regard to the safety and efficacy of the product.
General Biosimilars Guideline

This guideline outlines the quality, non-clinical and clinical requirements for Biosimilar medicines.

- The quality section addresses the physico-chemical, structural and functional requirements.
- The non-clinical section addresses the pharmacotoxicological assessments.
- The clinical section addresses the requirements for pharmacokinetic, pharmacodynamic, safety and efficacy studies as well as the pharmacotoxicological assessments with special emphasis on studying the immunogenicity of the Biosimilar medicines.
- The section on pharmacovigilance addresses the in-use safety of the medicine as well as the risk management plan.
Quality

• The annexure takes into account that different mAb products may share some properties, but may differ in other aspects such as mechanism of action and antigenicity.
 – MAbs may thus differ in terms of antibody-antigen binding regions and its secondary biological effects

• Molecular characterization should be as extensive as possible and be carried out in a head-to-head manner with the reference product.

• Primary, secondary and tertiary structure should be demonstrated as well as the composition and structure of post-translational modifications and additions – e.g. glycosylation.
Quality (cont.)

• Differences in critical product quality attributes (i.e. those that are known to have potential impact on clinical activity) will add to the clinical testing required for the Biosimilar.
 – For example, if differences are found in glycosylation patterns that alter the biodistribution of the product and thereby change the dosing scheme, dose-finding studies for the product would likely be required.
 – Differences of unknown clinical relevance, particularly regarding safety, may have to be addressed in additional pre- or post-marketing studies.
Quality (cont.)

• Other differences may be acceptable, and would not trigger the need for extra clinical evaluation.
 – For example, a biosimilar product with lower levels of protein aggregates will have a better safety profile.

• Due to the unavailability of the API of the reference, the biosimilar manufacturer will have to purchase the commercially available reference medicine for the comparison.
 – It should be verified that IPIs do not interfere with analytical methods and thereby impact the test results.
 – Purchase product from different batches to allow for batch-to-batch variability.

• If the reference API needs to be purified from a formulated reference medicine, it must be shown that the isolation method does not affect product integrity.
 – Comparative deformulation.
Quality:

In vitro Biostudies (Functional Assays)

- Data from at least three independent batches of the biosimilar mAb product used in the *in vitro* studies one of which must be a production batch should be provided. The studies should specifically include:
 - Binding of antibody to target antigen or antigens
 - Binding to isoforms of the relevant Fc gamma receptors
 - Fab-associated functions such as receptor activation or blockade
 - Fc-associated functions such as antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, and complement activation.

- All such studies should be comparative.
Physico-chemical & Biological Characterisation

PHYSICOCHEMICAL CHARACTERISTICS

VARIABLE REGION
- Deamidation
- Oxidation
- N-term Pyro-Glu
- Glycosylation
- Glycation
...

CONSTANT REGION
- Deamidation
- Oxidation
- Acetylation
- Glycation
- Glycosylation (fucosylation, sialylation, galactosylation, mannosylation...)
- C-term Lys
- Di-sulfide bond shuffling/cleavage
- Fragmentation/clipping
...

BIOLOGICAL CHARACTERISTICS

BINDING
- Affinity
- Avidity
- Immunoreactivity/crossreactivity
- Unintentional reactivity
...

EFFECTOR FUNCTION
- Complement interaction
- EcRn, EcγR interaction
- Mannan binding ligand interaction
- Mannose receptor interaction
...

OTHER BIOLOGICAL PROPERTIES
- PK properties
- Epitope/Immunogenicity
- Modulatory region (Tregitope...)
...
Nonclinical

In vivo studies

• *When in vitro* studies cannot fully demonstrate biosimilarity, then *in vivo* studies must be performed.

• Comparative in nature – designed to detect differences.

• Must be conducted in appropriate species.
 – Pharmacodynamic study and at least one repeat dose study (Latter not recommended for non-human primates).

• *Since the biosimilar manufacturer will use a different production process, qualitative differences in impurities and product-related substances may be detected.*
 – These may have clinically important effects on the immunogenic potential of the biosimilars.

• **Studies on safety pharmacology and reproduction toxicology are not required for non-clinical testing of biosimilar mAbs.**
Clinical Studies

General:

• Comparative PK and PD studies are required.
• In certain cases comparative PK/PD studies may be sufficient but usually comparative efficacy trials are required.
• Pre-registration safety data should be obtained.
• One year follow-up immunogenicity data usually required pre-registration for long term treatment
Immunogenicity Assessment

• Immunogenicity data should be generated from head-to-head clinical trials using state-of-the-art assays with appropriate specificity and sensitivity.

• Animal studies are not predictive for immunogenicity in humans.
 – Needs to be assessed to ensure drug exposure and validity of study.
 – Explain irregular PK and PD results

• Immunogenicity data should be interpreted in conjunction with PK/PD, safety and efficacy results.
Pharmacovigilance/ Risk Management

- A Risk management Plan and Pharmacovigilance system must be in place.
- Any safety monitoring imposed on the reference product or product class should be considered in the RMP
Indications

• Each claimed indication should be justified or demonstrated separately.

• Extrapolation is possible, but depends on clinical experience, available literature data, same mechanism of action or receptor(s) involved in all indications.
Take Home Points on Biosimilar mAbs

• Monoclonal antibodies are complex molecules
 – High level of microheterogeneity, there will always be differences
 – The mode of action is complex and may involve contributions from multiple mechanisms.

• **The challenge**: To demonstrate that differences between the biosimilar and the reference do not have a significant impact on clinical efficacy and/or safety.
 – Even small differences may have significant effects.
 – Need to combine physico-chemical results with functional assays (e.g., antigen-antibody binding assays and cell based assays) and the qualification in preclinical and clinical studies.